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ABSTRACT

Minimum distance parameter estimation using weighted

Cramir-von Mises statistics is considered for the general one-

dimensional case. Under rather general conditions, the derived

estimators are asymptotically normal. Consideration is given to

appropriate weights to produce Fisher-efficient estimators. In

fact, estimators can be obtained with influence curves pro-

portional: to any desired smooth function, and hence pre-

scribed first-order robustness properties. Many such curves (any

"redescending" influence curve) are shown to require weight

functions which take on negative values. Aes For

4NTIS C-t-&JI 7
]DTIC T"?[-

Distrib',Ji "

Avai al, ('2

* i
!i t -D-s -



1. INTRODUCTION AND NOTATION

We consider minimum distance (MD) estimation utilizing the

weighted Cramer-von Mises discrepancy. Letting r - {Fo,9 E 2}

denote a parametrized family of distribution functions (herein

termed the model), and G denote the empirical distribution
n

function based upon a random sample of size n from some distri-

bution function G, we write

(G n,F) = f(Gn - Fe )2* 0 f0d.1  , (1.1)

where U denotes Lebesgue measure. The factor * e will be referred
to as the "weight function", and will typically (although, as

we shall see, not for a number of important cases of interest)

be nonnegative and possess certain smoothness properties.

In the context of robust estimation, although we hope

G e r, i.e. G = Fe for some 0 e 0, r is more realistically
00

to be regarded as a model selected as containing a reasonable

approximation to G. Even in the cases where G o r, minimization
of 6 *(G, F) over all e £ a to obtain a MD-estimator typically

(under broad regularity conditions) results in a situation where

the estimand - that value for which the estimator is consistent -

has an intrinsic probabilistic meaning in that it is associated

with the best approximation (in a specified sense) to G in r .

(Parr and Schucany (1980) give further discussion of this point.)

We shall formally define the MD-estimator based on Gn with

respect to r and 6., as "the" solution of

H6 (GnF) , 3F
X e)- 8 -2(Gn - )e)-- fadu

(1.2)

+ I(Gn - tefeld - 0
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Thus, XG (T(G)) = 0 defines our estimator T(G), (we assume

n
a unique method of choosing a consistent solution - by a local

convexity argument, all consistent solutions will be r' - equi-

valent.) and our estimand is a solution of AG(T(G)) = 0. In most

of the typical contexts considered, another "n- consistent esti-
mator 6 of T(G) will exist, and we may simply choose the solution
of (1.2) closest to 0.

The influence curve (see Hampel (1974)) of the MD-estimator

obtained as a root of (1.2), or equivalently by minimizing (1.1),

may be seen by straightforward calculation to be (when G = F )
a Fe

(a - F ) "-f du

IC (c) f c e 0 0
TF U (1.3)

[--0 0 f edp

< c < -(c0c(x) (c,) (x)) , for all e e 0.'

In Section 2 we examine efficient estimation for one-para-

meter problems, with the normal, double-exponential and t-distri-

butions as examples) for the location problem, and the normal

distribution for the scale problem. Extensions to multi-para-

meter situations are discussed. Section 3 consists of a series

of conments on the robustness of estimators derived in this fashion,

and exhibits asymptotic equivalents for some familiar "robust"

estimators. Section 4 gives arguments for preferring MD estimators

to other locally asymptotically equivalent, but perhaps compu-

tationally simpler, estimators. Section 5 discusses some sugges-

tions regarding extension of the work in the preceding sections as

well as its numerical implementation. While the discussion in

these first five sections has been largely intuitive, avoiding

technical details and regularity conditions, a proof of the main

result is given in the appendix.
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2. EFFICIENT ESTIMATION IN ONE-PARAMETER PROBLEMS

For many estimation problems there exists an expansion of

the form

n 1
T[Gn] = TnF] In lICT,F(Xi) + O(i n5

(2.1)

as n- •

This justifies (asymptotically) the usual interpretations of

the influence curve, and tells us that 4(T[G n - T[F e]) d-

N(O,EF [IC2F (X)]). For sufficiently "regular" estimators, a

stronger expansion

T[H] = T[F ] + ficT,F (x)dH(x)+ o (1H - Fe11) (2.2)

as IIH - F811 + 0

holds, where jj * is a norm on the space of distribution

functions such that 11% - Gi1 = Op - ) as n + w, where G andnn
G are as in Section 1 (see Huber (1977) or Boos and Serfling

(1980)). From this, we can see that an estimator which is

efficient in the Fisher-Rao sense will have

alog f (c)
ae

ICT ,F (C) .log f 2  (2.3)

e ;eJ f~dVi

Equating the right-hand sides of (1.3) and (2.3) and differen-
tiating with respect to c, we find that when IC T,F(C) is

continuous in c
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-a 2 log f (c)

4i(c) F c)(2.4)
3Fre (c)

yields in general ICTF (c) proportional to the expression in (2.3),

and in particular for location or scale models, the attained

ICT, F Cc) is exactly that of (2.3). Boos (1980) also gives (2.4)

for the location case. Whether this holds for parameters of non-

location or scale type must be determined by inspection in each case.

Thus, except in special cases, full efficiency will not be consistent

with the restriction, typical for goodness of fit applications, that

* 6(c) i "(F 0(c)). Note that will vary with 0 in the mini-

mization.

Thus, minimization of 6 (Gn, F ) with respect to 8 should in
B

many cases produce asymptotically fully efficient MD-estimators of

0, subject to the regularity conditions outlined in the appendix.

For location estimation problems, (2.4) reduces to

a2 log f8 (c)
'Pc ac2

(c) (c) (2.5)

Hence, for the problem of estimation of the location parameter

of a normal population (a known and taken to be equal to I without

loss of generality), the weight function for efficient estimation

is found to be

**(c - O) =6 8(c) - I/f2 (c - B) = 27re (c- 0 ) 2  (2.6)

This yields ICTF (Cc) - c - B, - < c < - and an asymptotic
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equivalent at the normal parent for the sample mean. Using the

technique of De Wet (1980) it can be shown that the weighted

Cramer-von Mises statistic with weight function (2.6) has the

maximum approximate Bahadur slope in testing for the unit normal

against shift alternatives. This "coincidence" is natural in the

light of the results of Hodges and Lehmann (1963), with the new

twist that in the present case the inverted test is not asympto-

tically normal.

The double exponential model provides an interesting case

in which the ideal weight function is a point mass at 0, i.e.

**(x - e) is such that the integral

f W*(x - O)dx = IA 0 ) (2.7)
A

where IAC.) is the indicator function. Note that this result
A

does not follow from (2.5) but from the fact that the minimum

resulting from use of (2.7) is precisely the sample median, when

F0 is strictly increasing at its median 6.

The t-distributions constitute a broad class ranging from

the Cauchy to the normal. Here, the efficient weight function

is given (for k degrees of freedom) by

**(x- 8) - (k - (x - 8)2 )(k + (x - 8 2 )k
- I . (2.8)

Note that this weight function gives negative weight to extreme

values of x - 0, i.e. for Ix - 86 > &. This corresponds in fact

to the following basic principle. Since

3ICT F x)
W TF If 2 (x) (2.9)

6 x 0

is the weight function designed to result in an estimator with

influence curve ICT F(C) in the location problem, a redescending
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influence curve can only be achieved by use of a weight function

which is negative for some values. This may well serve to bolster

the misgivings some feel regarding these redescenders - they are

asymptotically equivalent to MD-estimators based on Cramer-von
Mises discrepancies with weights which are not nonnegative!

Curiously, the optimal weight function for estimation of
the standard deviation of a normal population with mean known and

equal to 0 wlog turns out to be

W = , (2.10)

similar to the optimal weighting for location. This strongly

suggests that simultaneous minimization of

a (G n ) = f(G n - F 11)2*, (x)f (x)dx (2.11)

with respect to U and o will yield efficient estimators of U and

o in the normal location and scale problem, where

W - a2/f2x - U) (2.12)

Note that we would actually define our estimators as the joint

roots of the simultaneous equations

a6 (Gn ,F U  )

= 0 (2.13)

and

as (Gn ,F )

=03oU
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A last intriguing example for location estimation is the

logistic family (scale known), where it follows that the optimal

weight function is that of the Anderson-Darling statistic,

(x) = [F (x)(l - a (x))] -

For the simple exponential, F(x,e) = 1 - e , x > 0,

and the optimal weight is

e32x/e
ip(x) = 1 3e x (2.14)

3. ROBUST WEIGHTED CRAMER-VON MISES ESTIMATION

However, the ability to generate asymptotically efficient MD-

estimators for a given parametric model would in itself be of

little value, given the existence of asymptotically efficient L-

estimators for location/scale problems (see Chernoff, Gastwirth

and Johns (1967)) and the option of using maximum likelihood esti-

mation for non-location/scale problems. Equation (1.3) gives

the key to a more significant application, however. Differenti-

ation of both sides of (1.3) with respect to c yields

3lCTFe (c)

ac
ac(c) = F (c) (3.1)

fe(c) )
fe C ae

as the weight function designed to give the associated estimators

a specified (differentiable) influence curve ICTF .). Our in-

tuitive desire for-a bounded weight function 0 (.) thus corresponds

to requiring ICTF(c) to be "extremely stable" for c in regions
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where f is small (typically c _+:).

Thus we may, as is the case with M-estimation, obtain esti-

mators with influence curve proportional to any desired function

(up to regularity conditions which will typically be satisfied for

cases with ICTF (.) bounded and "smooth"). There is the further

benefit that, opposed to M-estimation, when the model r is not

true, but only contains a reasonable approximation to G, the value

60 for which the M-estimator is consistent possesses an inter-

pretable probabilistic meaning as discussed below in Section 4.

For the normal location problem, where the optimal weight

function is

h(c) i/f2 (c - 0) = 0([u(l - u)]-2 log(u(l - u))I ),(3.2)

as c -+ ± , with u = F(c - 0), a natural modification to avoid

the unbounded weight function is

/f2 ( x - e) Jc - el <(k

8(c) = (3.3)
0Ic - el > k

for some fixed k > 0. This weight function "trims" the region

of integration in the discrepancy 6 (Gn, F ), and in fact yields

a local almost sure vn - equivalent of the trimmed mean with

trimming proportion 1 - (k), where (P is the unit normal cumulative.

The local equivalence in fact suggests usage of the trimmed mean

as a strategic starting value for the iterative procedure for

computation of this MD-estimator.

Equation (3.1) suggests equivalents to other well-known

"robust" estimators. Note, however, that the asymptotic n-

equivalences hold in general only at the model - the estimators

will have different behavior away from the strict parametric

model. A local asymptotid equivalent to a general M-estimator

of location e is provided (for any fixed density f) by taking

n
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x 6

tpe~ r fe(x) 0

1pe fe2 (X s 7r(3.4)

0 otherwise ,

for some constant s > 0 , where the M-estimator 0 is defined byn
1n rx. - ]q1 i n 0 (3.5)

4. MINIMUM CVM NORM ESTIMATION AND OTHER METHODS

It may well be asked why one should use a minimum CVM

norm estimator when other (computationally simpler) methods

exist which are asymptotically equivalent when the model r is
the correct one, that is, when G F r. Section 5 deals briefly

with the issue of computational simplicity. Reasons for pre-

ferring minimum CVM estimators include i) a concrete proba-

bilistic interpretation for the estimator when G V r, a property

not shared by the other methods; ii) the greater ease of appl-

ying minimum CVM norm estimators to complex problems not invol-

ving artificial symmetries, and their robustness properties;

iii) desirable properties of minimum CVM norih estimators as

indicated by Millar (1979); and iv) the extremely competitive

small sample behavior of minimum CVM norm estimators aq shown

by Parr and Schucany (1980) in the location problem.

To understand the benefit of minimum CVM norm estimation

as giving answers with concrete probabilistic interpretations,

consider the case G i r. Here, under suitable regularity con-
ditions, the estimator converges to the value 0 cQ such that

0
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6 (G , F0 ) = inf 6 (G , Fe). (4.1)

0

For instance, if 0  i/fe 6 0 gives a best L2 approximate to G

among the distribution functions Fe r . More generally, 6 ,

defines a notion of the "distance" measured in probability units

between two distribution functions, and 0 minimizes that dis-' 0

tance. Hence if 6 is well chosen a reasonable approximation

to G is obtained. Reither M or L estimators have this property.

M-estimators converge (under suitable regularity conditions) to

a solution of a linear equation in G having no necessary intrinsic

meaning when G j P.

In many complex problems, the CVM based estimators are

easier to apply than M or L estimators. The relative scarcity

of L estimators proposed for non-location or scale problems

which are robust and interpretable when G V r serves to illu-

strate this point. Application of M-estimation to such prob-

lems involves the extremely complicated solution of the equa-

tions of Huber (1977, p.33). For nonsymmetric or non-additive

errors, this is an unsolved problem for practical applications.

By way of contrast, robustness against gross errors of a CVM

based estimator can usually be achieved by keeping 4J0 small

(that is, fjtpaI fdu < c< - for all e e Q), while still preserving

consistency of the derived estimator when G s r.

Millar (1979) indicates a number of desirable features

of minimum CVM norm estimators in a precisely specified mini-

max sense against sequences of alternatives approaching the model

r. This further bolsters the intuitive notion that the estimators

should have good properties when the model is not exactly true,

but still contains a reasonable approximation to G.

Parr and Schucany (1980) report partial results from an

extensive Monte Carlo study comparing minimum CVM norm estimators

to the best of the M and L estimators for location examined in



the Princeton Study (Andrews, et ae. (1972)). They find the CVM

based estimators to be highly competitive with these others,

which were chosen for inclusion because of their previously

documented excellent behavior at the distributions examined in

this later comparative study.

5. COMPUTATIONAL MATTERS, EXTENSIONS AND CONCLUSIONS

Unfortunately, for a variety of possible weight functions,

the discrepancy 6 8(G n, Fe) does not admit a simple calculating

form. However, the alternative version

6* (Gn' F ) = Z (Fs(X(i)) - )2,8(F n + ) (5.1)
nP as n i 1  n + 1 6 n+I

(where Xci) is the ith order statistic) which yields an estimator

with the same asymptotic distribution as the one obtained by

inverting t54, (Ga, F6), is much easier to calculate when 6 (Gn, F8)

does not integrate in closed form. In fact, the derivatives of

6* (G Fe) generally possess simple forms, permitting the use

of a Newton-Raphson routine for computation of the estimator.

Thus, the estimators are essentially no more costly to compute

than the usual M-estimators. (See DeWet and Venter (1973) where

this statistic is used in a goodness-of-fit setting).

Alternatively, in. the location case, where for reasons of

invariance }) h( - -) a function free of 8,

weighted nonlinear least squares techniques can be employed to

minimize 6* (Gn, F8). In experimentation involving this second

method, the first author has used standard nonlinear regression

packages to compute the MD-estimator and obtained convergence

to sufficient accuracy for applications typically in less than

five iterations.
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Although (2.10) gave a single weight function which yielded

jointly optimal estimators for the location and scale of a normal

distribution, a single such weight function does not exist for

multiparameter parameter problems in general. For a p dimen-

sional parameter 0' m- (O6 2,. . p), jointly optimal esti-

mators are however available as the joint roots in 01, 02,.... 0

of

i5 (, , F0)

= 0, i = 1, 2, ..., p (5.2)

where

-;21og f 0(C)

N) ac

y e i "F (c) , i = 1, ... , p. (5.3)

f y ( c ) -7 5

Such a procedure would be necessary if optimality of the vector

estimator e were important. It will be noted that equations

(5.2) correspond to (in fact under general conditions are asymp-

totically equivalent to) the likelihood equations.

6. APPENDIX

In this section we give conditions for the MD-estimator

based upon 6 (Gn, F0 ) to be asymptotically normal (and Fisher-

Rao efficient with proper choice of *,9' although our result allows

other weightings). We assume that strong consistency of the

selected root of (1.2) is guaranteed by some result such as

Theorem 2 of Parr and Schucany (1980), or one of its modifi-

cations stated there, we take 00 0 without loss of generality,0

write F F =G, fe =f, and define
0 0
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t #0t

h(t) t-t(6.1)
XT'F(T(F)) t 0

(Note xF(t(F)) T(F) = 0, and hence h(t) is just the difference

quotient when t @ T[F]. Thus, h(t) is continuous at t - T[F] by

differentiability of XF(c) at T[F]).

It is sufficient for asymptotic normality that ICT,F(c) as in

(1.3) be square integrable with respect to F, and

T[G n ] - T[G] - H(Gn) fiCTF()dGn(c) =op( , , (6.2)

where H(G) 1 w.p.l. We take

x'G(T[G])

H(G ) = - (6.3)
n h(TIIG n)

and then

T[TGn] - TfFI - H(Gn) fiCT,FCc)dG n(c) =

after some elementary algebraic operations. Since h(T[Gn]) -

'F(T(F)) > 0 w.p.l by assumption, we need\ merely show each

o( F)-- For th fdrs

of the terms in the second factor to be ) For the first

term it is clear that

2f(G - F){IF 11feI -~ *8F e6Od

n -TG B3-9
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%- F.
2 {F(l - F)1 /2 - {F(1 - F)} (6

I Fe IFe (6.5)
-6 re - -- efe du
i lefe e=T[G] I 6=0

Since sup lGn - F1 0 l for 0 < E < 1/2 and T G ]

(F(l - F)) ]2- P

is strongly consistent, it follows that a sufficient condition

for the first term to be of proper order is

{Fc1 - F)) } 1 - 6 du - 0 , (6.6)

as c - 0. (For specific cases such as location estimation, this

simplifies considerably).

For the second term in the sum on the RHS of (6.4), it

suffices to show that both

(F - C )2 [bf ]  dij = o(6.7)

n a e ffT[G] P (7n

and

n2f (F - Gn) (G -F )  f ,oe dui -. . (6.8)
n 6 36 a 1 =T[G n IP

The first of these [viz (6.7)] is bounded (for 0 < 6 < 1) in

absolute value by

sutp ( n 6 ).f{FO. - F)11-' Ij (l~f I ld
( F06T[] a (6.9)

and the second (6.8) (for 0 < e < 1/2) byIG F
2 sup (F( lI F ) - F))} (F - F ) 6 e 0 =e]0-TCG

(6.10)
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Thus if

f{F(l -F)l T [efeldp <

for 0 in some neighborhood of 0, and

limf {F(l - F)} /2- (F - Fe) [,ofo]di = 0u ,
800

these terms are also o (-- . Collecting our conditions, with

all notation as before, we thus have the following.

Theorem. If {T[Gn]= l is a sequence of D-estimators based upon

the sequence {Gn ' with respect to r and 6 0 chosen as a

solution-of (1.2), and

i) T[G I is strongly consistent,
ii) G = F0 for some 0 c S (taken without loss of generality

to be 0 = 0),

iii) XF(c) is differentiable at T[F] and 'F (T(F)) > 0,

iv) 0 < IIC2F(c)dF(c)-_ a2 < -, and

V) limf{F(-F)12 - p f -f d = ,
c-O : cc ae _ofo9=0

f{F(l - F)}I- - p,[fo]dj < - for 0 in some neighbor-

hood of 0,

and lim f{F(l - F)}/2"I(F - F [ of ]Idu = 0 for some

0 <C , then 14T [T[Gn ] - T[G]] 4. N(O,a2). (In fact, under

these conditions we have an almost sure representation of the

estimator, as can be easily seen from an examination of the

proof). 3Fo
It should be noted that finiteness of f-,' *,dfdu and

O- [f]d for in a neighborhood of zero is sufficient but

not necessary for iii)-v) to be satisfied. Thus, for the case

of location estimation, a set of sufficient conditions to replace

iii)-v) is



16

111*) *0 and 16= 0 are bounded

iv*) ff 0
2 d d <

and V*) ff0'du < o.

These conditions are quite reasonable due to robustness consider-

ations which make bounded weights desirable and the requirement

of a square integrable density with finite Fisher's information

a natural smoothness requirement. Boos (1980) gives moment-type

conditions for the analogue of the above theorem when 0 is a

location parameter.

7. ACKNOWLEDGEMENTS

The research of the first author was partially supported by

ONR Contract N00014-75-C-0439, and that of the second author by

the C.S.I.R. The authors are grateful to W. R. Schucany and to

the referees for a number of comments which improved the presen-

tation and content of the manuscript.

BIBLIOGRAPHY

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J.,
Rogers, W. H. and Tukey, J. W. (1972). Robust Estimates
of Location. Princeton University Press, Princeton,
New Jersey.

Boos, D. D. (1980). Minimum distance estimators for location
and goodness-of-fit. To appear in Jounat o6 Vie Ameai-
can StaZL at A soci a0on.

Boos, D. D. and Serfling, R. J. (1980). A note on differen-
tials and the CLT and LIL for statistical functions with
application to M-estimates, Ann. Statit., 8, 618-624.

Chernoff, H., Gastwirth, J. L. and Johns, M. V. (1967).
Asymptotic distribution of linear combinations of func-
tions of order statistics with applications to estimation.
Ant. MoA. Statist. 38, 52-72.



17

De Wet, T. (1980). Cramer-von Mises tests for independence.
J. MuZtivaA. AnnaX., 10, 38-50.

De Wet, T. and Venter, J. H. (1973). Asymptotic distribution
for quadratic forms with applications to tests of fit.
Ann. Statiht. 1, 380-387.

Gregory, G. G. (1977). Large sample theory for U-statistics
and tests of fit. Ann. Stat6t. 5, 110-123.

Hampel, F. R. (1971). A general qualitative definition of
robustness. Ann. Math. Statit. 42, 1887-1896.

Hampel, F. R. (1974). The influence curve and its role in
robust estimation. J. Amet. StatLbt. A6.oc. 69, 383-393.

Hodges, J. L. and Lehmann, E. (1963). Estimates of location
based on rank tests. Ann. fath. Statizt. 34, 598-611.

Huber, P. J. (1977). Robuat StatL6tica2 Pftocedtuke. Society
for Industrial and Applied Mathematics. Bristol, England.

Millar, P. W. (1979). Robust estimation via minimum distance
methods. Unpublished manuscript.

Parr, W. C. and Schucany, W. R. (1980). Robust estimation and
mimimum distance. Jowtnt o6 the Ame,&Zcan Sta;titicat
A64ociatiof, 75, 616-624.



Unclassified

SECURITY CLASSIFICATION Of THIS PAGE ("on Do Entered) __________________

DOCUENTAION AGEREAD INSTRUCTIONSREPORT DOUETTINPGDEFORE COMPLETING FORM
1REPOA NUMBER .GOVT ACCEhSSION N40 3. REIPlIEIT'S CATALOG NumOERn

142 v'
4. TITLE (ad SaabetI) II. Typi GOP REPORT & PERIOD COVCRCO

On Minimum Cramer-Von Mises-Norm Parameter Technical Report
Estimation S. PERFORMING ORG1. REPORT NUMBER

142
7. AUTHOR(s) 6. CONTR4ACT ORt GRANT MUMCR(s)

W. C. Parr N00014-75-C-0439
T. De Wet

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKC
AREA A WORK UNIT NUMBERS

Department of Statistics N 4 8
Southern Methodist University N 4 8
Dallas,_Texas_75275 ______________

11. CONTROLLING OFFICE NAME AND ADDRESS IS. REPORT DATE

October 1980
Office of Naval Research IS. NUMBER Of PACES

Arlington, Va. 22217 18
14. MON ITORING AGENCY N AME & ADORSS(tt differet kern Controlingu Offi ce) IS. SECURITY CLASS. (of this tsout)

I50. OCCL ASSI PIC ATI ON/ DOWNGRADING
SCN EDU L

IS. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; its
distribution is unlimited. Reproduction in whole or in part is
permitted for any purposes of the United States Government.

17. DISTRIBUTION STATEMENT (of the abstract afo'*e1A &torn.** 0.it dilfest from, 90POrt)

IS. SUPPLEMENTARY NOTES

1S. KEY WORDS (Contiue an reverse side if neessary and tavatif by block number)

20. ABSTRACT (Continue an reverse aide It ereassamv oand tdmtflir hp block nhumber)

Minimum distance parameter estimation using weighted Cramer-von Mises
statistics is considered for the general one-dimensional case. Under rather
general conditions, the derived estimators are asymptotically normal. Consi-
deration is given to appropriate weights to product Fisher-efficient estimator.
In fact, estimators can be obtained with influence curves proportional to any
desired smooth function, and hence prescribed first-order robustness properties
Many such curves (any "redescending" influence curve) are shown to require
weight functions which take on negative values-.

DO fr"t 1473 COITION OP I NOV 66 IB OBSOLETE

9ECURITY CLASSIFICATION OTISPAGE (When. ise.


